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Transitions in the 

The Dobrushin uniqueness theorem assures that in a very large class of high- 
temperature classical statistical mechanical lattice models with short or long 
range, many-body interactions, and arbitrary compact spin space there are no 
first-order phase transitions. It will be shown that for the same class of 
interactions there are also no second-order phase transitions. 
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1. I N T R O D U C T I O N  

Dobrushin's uniqueness theorem (1) asserts the uniqueness of Gibbs states 
for a very general class of long-range, many-body potentials in classical 
lattice models with arbitrary spin at high temperature. In a translation 
invariant theory the uniqueness theorem therefore assures the nonexistence 
of first-order phase transitions for these potentials and temperatures. In this 
paper we shall show that for the same potentials and temperatures there 
are, in fact, no second-order phase transitions either. 

More explicitly, we shall show that the pressure is twice continuously 
differentiable in the entire Dobrushin uniqueness region, which may be 
regarded for these purposes as a subset of a naturally associated Banach 
space of potentials. The techniques are adapted from Ref. 6. 

Gallavotti and Miracle-Sole have shown (5~ that if the single-site spin 
space consists of just two points then qualitatively better results can be 
gotten by other techniques. They show, in particular, that the pressure is 
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analytic at high temperature for a somewhat broader class of potentials 
than that to which the Dobrushin uniqueness theorem applies. This should 
be contrasted with results of the present paper which only show twice 
differentiability. Their techniques, however, seem to be limited to spin 
spaces consisting of a finite number of points. Thus for a system with a 
continuous spin space, such as a crystal with a diatomic molecule at each 
site, the only high-temperature technique that applies with great generality 
is Dobrushin's. It is not known whether analyticity of the pressure can 
actually fail at high temperature in the very large space of interactions to 
which Dobrushin's uniqueness theorem applies. For results on high- 
temperature analyticity with continuous spin space and a smaller, but quite 
general, space of many-body long-range interactions we refer the reader to 
Ref. 9. For general results on analyticity via high-temperature expansions 
we refer the reader to Refs. 3, 4, 7, and 8. 

Because the proof has many technical details I have included a section 
(Section 3) which sketches the proof in an informal way. It includes a series 
expansion for the second derivative which is different from the usual series 
of covariances and which may conceivably be more useful for computa- 
tions. In fact, although the usual series of covariances was treated in Ref. 6 
by related techniques, I was not able to show that it converges in the entire 
Dobrushin uniqueness domain nor that it actually represents the second 
derivative of the pressure. 

2. NOTATION AND STATEMENT OF RESULTS 

Consider a classical statistical mechanical system on an m-dimensional 
cubic lattice Z m with single spin space X. We take X to be a compact 
metric space. A many-body interaction is given by a real-valued function, 
% on the union of all products X A wherein A runs over all nonempty finite 
subsets of Z m. We assume 9~IX A is continuous for each A and that 9) is 
translation invariant. The energy of that portion of the system which lies in 
a finite subset A of Z m is given by 

uA(s )  = 
A c A  

when the configuration in A is s. Here s is in X A and the sum runs over all 
nonempty subsets of A. 

Denote by u a finite measure on X, the a priori single-spin measure. 
Writing IAI -- number of points in A we put 

[Icpll = ~ [Alsup([~p(s)l:s ~ X A } (2.1) 
A ~ 0  

and denote by ~ the Banach space of translation invariant potentials for 
which I1 11 < 
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The pressure, P(99), is defined, as usual, by 

-- limmlAJ-'l~ ('Aeax -vA(')vA(ds) P(99) A--~Z 
where v A = IIaEA v. AS is well known (Ref. 13, Chap. 2), the limit exists for 
all 99 in • when lima_,z~ is suitably interpreted. 

Dobrushin's uniqueness theorem asserts that 99 has a unique Gibbs 
state, i.e., a unique solution to the DLR equations, for 99 in a neighbor- 
hood, 63, of the origin in q .  63 may be described as follows. 

Let f~ = X z ' .  For each point a in Z m put 

Wa(s)= E 99(sIA), s ~ ~  (2.2) 
A ~ a  

Since the series converges uniformly, Wa is continuous. Let 

zo(o = f t xz~ (2.3) 
and 

i~,(dx Is) = Z~(t)- 'e-Wo(XV~ (2.4) 

where t = S Izm - -  { a ). For b 4:0 in Z m put 

Pb = (1/2)sup(ll ~'o(" Is) - t~0(" ] s ' ) l l v a r  : s = s '  off (b) )  (2.5) 
and put 

a(99) = ~ 0a (2.6) 
a~0 

The Dobrushin uniqueness region is 

63 = (99~ff  : a(99) < 1) 

We shall show in Proposition 2 in Section 4 that a (.) is continuous on 
ft. Thus | is an open set in ft. Since any potential 99 in 63 has a unique 
Gibbs state it also has a unique equilibrium state by a theorem of Lanford 
and Ruelle (cf. Ref. 14, Theorem 4.2). It follows (Ref. l 1, p. 96) that the 
pressure is continuously differentiable on 63. Our main result is the follow- 
ing. 

T h e o r e m  1 .  The pressure P is twice continuously differentiable on 
63. Specifically, the second derivative 

02P(99 + Ut~2 + 19~1) . . . .  0 

e;'(q,l, q,~):- auOv 

exists for 99 in 63 and ~b I and ~P2 in if, and, for fixed ~1 and ~2, is continuous 
in 99. 

Moreover, 

]e~'(~bm,tp2)] ~< 211 - a(99)]-21[~b~][ [[lPxl[ (2.7) 
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Remarks. 1. Dobrushin's uniqueness theorem is not only quite gen- 
eral but also quite strong. Simon (15~ has shown that for any positive 
number c there are multiple phase potentials within a ~ distance c of @. If 
there should actually be a critical point on the boundary of @ then (2.7) 
could conceivably be used to get an estimate of a critical exponent by 
elaborating, in particular models, the dependence of 1 - a (~ / kT )  on T 
and on any external fields occurring in rp. But this is likely to be a crude 
estimate because of the generality of these techniques. 

2. For an inequality going the other way from (2.7) see Ref. 2. 
3. We have formulated the main result in a translation invariant 

context since this is the most interesting case and simplest to state. More- 
over, the second derivative of the pressure (or free energy in some interpre- 
tations) has direct physical meaning (e.g., susceptibility). But the proof 
actually consists in showing that Gibbs states are continuously differentia- 
ble on | Thus translation invariance is not necessary for the key result of 
this paper. 

3. SKETCH OF PROOF 

Write f~ = X z'~ Then ~ is a compact space and for any real-valued 
continuous function f on ~2 put 

(%f)(s) = f f(x v t)#a(dx(t) (3.1) 

for any point s in f~, where t is the restriction of s to zm - -  (a}. %f is again 
continuous. The operator % depends of course on the potential % Enumer- 
ate the points of Z m in any order and denote them 1,2,3 . . . . .  The 
operator 

TJ = l i s n  ~ T , T 2  " " " ~j ( 3 . 2 )  

exists and the limit may be taken in the supremum norm in the space C(a) 
of all real-valued continuous functions on fL See, e.g., Ref. 6 for a 
discussion of convergence. If a(ep)< 1 then q0 has a unique Gibbs state, 
( )~, and for any point ~ in ~2 

(f)~0 = lim (T~f)(~) (3.3) 
n ~ o 9  

for any function f in C(a). See Ref. 16, Section 6, or Ref. 6, Corollary 3.3, 
for a proof. 

Informally, if we denote the derivative of T~o in some direction ~ in 
by T', i.e., T " =  dT~+~q,/du at u = 0, and the derivative d(f)~+u,/du at 
u = 0 by ( f ) ' ,  then Eq. (3.3) gives 

n - - 1  

( f ) ' =  lira ~,  (T"-k-~T'T~f)(~) (3.4) 
rt--)" r k ' ~ =  0 x 
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where we have written simply T for T~. But using Eq. (3.3) again for each 
term in the sum yields 

<i>, = 
k=O 

In the next section we shall justify these steps and show that the series 
converges. Of course ( f ) '  represents a second derivative of the pressure 
[see Eq. (4.22)]. Finally, performing the sum on k yields 

(f)'= (T ' (1 - T ) - l f ) ~  (3.5) 

We shall see that this is meaningful and correct if 1 - T is interpreted as an 
operator in a suitable space of functions modulo constant functions. 

Since the equilibrium state ( )~ determines the first derivative of the 
pressure (see, e.g., Ref. 10, Section II.1) we get, finally, for the second 
derivative of the pressure in the directions 61, 

P~'(61,q~) = (T ' (1 - T)-lf,~,)~ (3.6) 

where f,, is a function on f~ linearly associated to 61 [see Eq. (4.23)]. 

4. P R O O F S  

The space ~--= X zm is a compact space on which we shall consider 
various classes of functions. For any function f in the space C(~2) of 
continuous real-valued functions on ~ put, f o r j  in Z m, 

~j(f)  = sup(I f (s )  - f ( t ) [  : s,t E ~, s = t except at j )  

and define 

[f[1 = E 8j(f)  
j E Z  m 

C 1 will denote the space of funct ionsf  in C(~) for which (a) ]f]l < OO and 
(b) there exists a sequence fn of continuous cylinder functions on ~ such 
that I f -  fn]l--~0 as n--> oo. 

The kernel of the norm [ 11 consists exactly of the constant functions 
on ~2. The quotient space is a Banach space. 

For any potential r in • we also put 

[[r = X sup([~p(s)[ :s  E X  A ) 
A ~ O  

and, for a 4 ~ 0 in Z ~, 

~a(rp)=sup{[ ~ Og(s[A)[:sEf~) 
.4 3 {0,a ) 

~a(Cp) measures the "decay rate" of the many-body potential cp. Note that 
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When the dependence of the conditional probabilities/~ [cf. (2.4)] on cp 
must be exhibited we write/~a*" 

The two inequalities of the following lemma are the key ingredients of 
the proof. 

i .emma 1. Let ep and ~b be in P and let h be in C(X). Let s and s' be 
two points of ~ which differ only at the point a v ~ 0 in Z "~. Then 

10(tL~+~+h)(s)/0ul~=0l <<. II~ll~ 8(h) (4.1) 

where 8 ( h ) =  suph - infh and 

10( I~+ ~h )( s) / ~ul,=o - ~( I~ff+ ~h )( s') / Oul,=ol 

< 2g~(@)min(lh[oo,~(h)) + 2 l l~ l l~(~)6(h)  (4.2) 

Proof. Let t and t' be the restrictions of s and s', respectively, to 
Z m -  (0). Put 

~(x  v t lA), g'(x) = - ~ ep(x V r IA) 
A ~ O  A ~ O  

g ( x )  = - 

and 

k(x)  = -- ~a ~ ( x V  tlA),  k ' ( x ) =  - ~ t~(xV t ' lA ) 
A ~ O  A ~ O  

Then by the definition (2.4) we have 

(4.3) 

Since g and k are continuous on X, and a fortiori bounded, one may 
conclude easily that 

~( I~+~h)(s)/Su[~=o = ( ( k -  (k)g)h)g (4.4) 

where ( )g denotes expectation with respect to the normalized measure e g 
dp / f e  g dp. 

The right side is clearly zero if h is a constant function on X. Thus the 
right side is unaffected by subtracting (h)g from h. Hence 

10( ~U~h)(s)/Ou[u=ol < I((k - (k)g)(h - (h)g))g I 

<[[k - ( k ) g l l L 2 ] [ h  - ( h ) g l [ L Z  

< IlkllL=l[h - (h)gl[L= 

< Ikloo(suph - infh) 

In these inequalities the L 2 norms are computed with respect to ( )g. Since 
Iklo~ << IIq~l[~ inequality (4.1) is proved. 
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Now p u t g v = V g + ( 1 - v ) g '  and k ~ = v k + ( 1 - v ) k '  for 0 < v <  1. 
Let F(v )  = ((k~ - (k~)g~)h)go. Then by (4.4) the left side of (4.2) is exactly 
IF(l) - F(0)l, which we estimate as in Ref. 15 by writing 

F(1) - F(0) = f o l ( d F / d v )  dv 

Fix a number v o in [0, 1]. F(v )  does not change if we subtract a constant 
from h. So we subtract (h>goo. In view of (4.3) we have, writing ( >v in place 
of ( )go, 

dFdv I dvd _ (h>vo))vlv=v I,~=vo- <(k o - (k~>~)(h 

= <(~ - ~' - <~ - ~'>vo)(h - (h>vo)Lo - d <koo>v<h - <h>vo>~0 

+ <[ g -  g ' -  < g -  g'>oo] [ koo -  <~o>vo] [h - <h>~o]>~ ~ 

The second factor of the second term is zero. The first and third terms 
may be estimated using the Schwartz inequality for the expectation ( >~o, 
giving 

Tv < lie - - ( k  - k'>vollL211h - (h>oo[IL2 

+ Ilg - g ' -  ( g  - g'>vollL=llkvo - <kvo>vollL=suplh -- <h>vo[ 

Since IIh - (h>vollL~ is dominated by both rhl~ and 6(h) we have 

N <~ Ik - k ' l ~ m i n ( I h l ~ , ~ ( h ) )  + Ig - g I~lkvol~8(h) 

But I~vl~ < I1~11~ for all v in [0, 1], while 

Ig(x) - ~ ' ( x ) l - - I  Z [ ~ ( x  v , IA)  - ~ ( x  v ClA)] I  
A ~ O  

= I 2 [ ~ ( x  V t[A) - cp(x V rlA)]l 
.4 ~ {0,a) 

2~'a(~0) 
Thus 

X d F  
"~v-v I < 2~a(@)min(Ihl~,6(h)) + 2~'a(qg)[l@ll~8(h) 

Integrating this inequality from 0 to 1 yields (4.2) and concludes the 
lemma. 

P r o p o s i t i o n  2. a ( . )  is continuous on •. In fact, 

l a (~ ' )  - ct(ep) I < (1 + I1~11 + IIqr - q01l (4.5) 
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Proof. Write pb(Cp) for the expression in (2.5). Then 

I~(m') - ~(~)1 < Y ,  [Oa(~P ')  - -  oo(m)l 
a4=O 

<(1//2) ~,, sup{l[ P,0~'( [ t) -/~0r [t')llVar 
a~0 

- II ~ (  I t) - t~d~ ] / ' ) l l v ~  : t = t' off ( a )  } 

< (1/2)  ~ sup{ [I F~~ - / z~~  
av~0 

- [ / z ~ (  [ t ) - # ~ (  [ t ' ) ] l l w ~ : t = t '  o f f ( a ) )  

But, putting qJ = cp' - q9 and % = cp + u~b, we have 

II ~ ' (  [ t) - # ~ ' ( I t ' )  - ( / ~ ( I t )  - / ~ (  [t'))IIVar 
= sup I pvu  - I ~ ( h ) ( t )  - [ I ~ ' ( h ) ( t  ') - ~ ( h ) ( t ' ) ]  1 

h ~ C(X),tht~ < l 

< sup 2~.(q~)lh[oo + 211~111~(%)6(h)] du 

U t by Lemma 1. But 8(h) < 21h]oo and ~ ( % )  < L ( ~  ) + (1 - u)~(cp) since L 
is a seminorm. Thus 

]OL(~9')- O/(~0)[ < a~0f01[ ffa(l~)'[- 2[[l~][l(U~a((~0 t) " [ - (1 -  U)~a(~))]du 

a4:0 
But 

E L(~P) < E E sup{IcP(s)l:s E X  A ) 
a~-O a~O.A D {0,a} 

< ~ (IAI - 1)sup{l~(s)l : s  ~ X A } 
Ag0 

< II cp[[ (4.6) 

and of course Ilqd[~ < Ilq~ll. The proposition now follows from this and the 
last estimate of l a (cp') - a (n0[- Note incidentally that since a (0) = 0, a (.) is 
actually finite on all of @, with a(cp) < (1 + [l~l[)[[~ll, as follows by putting 
q / =  0 in all the previous inequalities. �9 
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Lemma 3. I f f i s  in C 1 and q~ is in ~' then "9~f is in C 1 and the map 
q0-+ ~ff  is continuous from ~ into C 1 for any point j in Z m. 

Proof. We may take j = 0 without loss of generality. Suppose that 
a ~ 0 is in Z m and that s and s' are two configurations in ~ which differ 
only at a. If f is any function in C(~) then, writing t and t' for the 
restrictions of s and s', respectively, to Z m - (0}, we have 

(':~f)(s) - (r~f)(s') = f f(x, t)#o~(dx[s) - f f(x, t')#~(dx[s') 

= f [  f ( x , t )  - f (x , t ' )  ] tzf(dx ]s) 

+ ff(x,r)[ ~y(dx Is) - ~y(dx Is')] 

= A(q0) + B(q0) (4.7) 

where A(q0) and B(qv) are the values of the two integrals. Note first that 
]A(~)] < supx]f(x,t ) - f ( x , t ' ) ]  <~ 8~(f). Moreover, since the signed mea- 
sure in brackets in B(qo) has total mass zero we may subtract [SUPx f (x ,  
t') + inf~ f (x ,  t ')]/2 from the integrand in B(qo) yielding 

IB(w)I ,< (1/2)8o(f)l] t~#(" [s) - ##(. [s')llvar < 80(f)o~(~ ) 

Thus 8~ ('tiff) ~< 80 ( f )  + 8o(f) & (90. Summing on a yields [note that 8o(,fff ) 
= 0] 

[l~o~/[ll < ]/]1 + 8o(f)a(90 (4.8) 

Now from (4.1) we have 

0. [ 

while from (4.2) we have 

O B ( ~  + u,p) 

Hence 

t" < 11~ll ,8(f( . , t ) -f( . ,  )) 

< 211~Pll,lf(', 0 -  f(.,r)l~ 
< 2[bPll~Sa(f) 

< 2L(tP)8o(f) + 211~P111~'~(9~ + mP)8o(f) 

+ t 0 ( s )  - - + - ]1 
<s '100-o~ +"~/)(s)/o.- O0-o ~+"y)(r ul a~ 

1 
< 2s  [llq.ll,Sa(f) + (LOP) + IltPlIIL(W + mp))6o(f)]du 
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Since ~a(qO + UCp) < ~a(qO) + U~a(~) we may estimate the integral and, using 
(4.6), sum on a to get 

[l~'~+~f - T~~ << 211~1111f11 + 2111,/,11 + II~lll(llcpll + (1/2)llq~ll)]80(f) 

(4.9) 

Suppose now that q) is a finite-range interaction and that f is a 
continuous function on ~2 depending on only finitely many coordinates. 
Then we see from Eqs. (2.2)-(2.4) that the measure/x0(- Is) depends on only 
finitely many coordinates of s and, by (3.1), so does r~f. If f is now any 
function in C 1 and fn are continuous cylinder functions converging to f in 
C 1 sense then (4.8) shows that [1 z ~ f -  r~fnlll~ 0 so that ~'~f is in C 1 if q9 is 
of finite range. Finally if cp is an arbitrary interaction in 9 and % is a 
sequence of finite-range interactions converging to cp in 9 norm, then for 
a n y f i n  C 1, (4.9) shows that [~'~3f- "c~f h goes to zero as n ~  oe. Hence r~f 
is in C 1 for any q) in 9 a n d f  in C 1. Moreover (4.9) also shows that ~p~ ~-~f 
is continuous from P into C 1. 

I .emma 4. For any potentials cO and ~ in P and any function f in 
C(f0 the function u ~ rT+u~f from the real line into the Banach space C(~) 
is differentiable, and its derivative 

0(9~ f = d.rT+"+f / dul,=o 
is continuous in ~p as a function from ff into C(f~). Moreover 

IO+z~floo <- 8j(f)[lg,][l (4.10) 

Proof From the definitions of (2.2)-(2.4) and (3.1) we have 

(~)~+~f)(s) = f x e x p [ -  Wj~(x, t) - uWj+(x,t)] 

x f ( x , t )v (dx) / f xeXp[-  ~.~+U+(x,t)] v(dx) 

where t = s restricted to Z m - (j}. Since all of the functions Wj and f are 
continuous functions of all arguments and afortiori bounded, it is clear that 
the right side is continuous in s, is continuous in u as a function into C(fl), 
and, moreover, since the difference quotient for the exponential function 
converges uniformly to its derivative on bounded sets, the difference 
quotient for u ~ ~)~0+,~f converges uniformly in s to its derivative, which at 
u = 0 is given by 

(Dr = - fxexp[ - wj (x, t)] wj*(x, t)f(x, t) v(dx)/Zjr(t) 

+ fxeXp[ -  ) 

x fexp[- Wj~(x, t ) ] f ( x , t ) v ( d x ) / [  Zj~(t)]2 
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Since the map ~-+ Wff(s) is continuous from ff into C(~) it is clear that so 
is the map ~ ~ D~rfff. Finally, taking into account the translation invari- 
ance of the I1~11, norm the inequality (4.10) is just the inequality (4.1) with 
h(x) = f(x,  t). �9 

Recall the definition (3.2), of the operator T~: C ( f 0 +  C(f~) corre- 
sponding to a potential r in ft. A discussion of this operator, first used by 
L. N. Vasershtein, (16) appears in Ref. 6 along with some related inequalities 
which we shall need. 

Lomma 5. L e t f b e  a function in C 1, let r be in | and let ~b be in ft. 
Then the function u---> T~+~f from the real line to C(f~) is differentiable at 
u = 0. Its derivative, 

O,pTj - -  dT~+. j /  dul.=o (4.11) 

is a continuous function of cp from | to C(~2) and 

IO~ZJ[~ < [ I  - a(ng)]-'l[~Pll,[fl, (4.12) 

Proof. Informally, the chain rule shows 
o0 

D ~ T j =  ~,, "r~'. . . r. ~ liD-'rS~r~ . . . f  (4.13) j - -  \ ~ j  I j  1 
j= l  

We shall show first that the series actually converges uniformly on ~2. For 
in fact since each r is a contraction in sup norm 

cp ~ ~0 E Irf p ' ' "  r )r.+,..a "f]~ < E I(D+'o~)~, "" "fl~ 
j= l  j= l  

j = l  

< II@ll,lfh[1 - - ( ~ ) ] - '  

wherein we have used (4.10) in the second line and inequality (3.26) of Ref. 
6 (with d = 0) in the third line. 

Write A d for the right side of (4.13). Since the series converges 
uniformly on ~, as these inequalities show, and since each term is a 
continuous function on fl, A j  is in C(f~). Moreover, 

IAJl~ < Ilg, ll,lfh[ l - a ( ~ ) ] - '  (4.14) 

Now i f f  depends on only finitely many coordinates then r = f for all 
sufficiently large k, and of course D~zfff = 0 for such k. Since T j  involves, 
in this case, only a finite product of operators, the chain rule is indeed 
applicable, Eq. (4.13) is correct in view of Lemma 4, and the right side is a 
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finite sum. Thus 

dT~+,j -- Aj (4.15) 
du u=0 

if f is a continuous cylinder function. Moreover, the map cp ~ A j  is 
continuous on @ to C(f~), in this case by Lemma 4, since A J  is a 
polynomial in continuously r operators acting on f. But if f is an 
arbitrary function in C ~ there is a sequence, fn, of continuous cylinder 
functions such that I fn -- fh ~ O. Thus by (4.14)IAjn - A r f l o o  converges to 
zero uniformly on each set (tp E ~ : a(cp) < x < 1}. It follows first that the 
map rp ~ A J  is continuous from | into C(f~). Secondly it follows that for 
each cp in the open set | that dT~+ujn/du converges in C(f~) norm, 
uniformly for u in a neighborhood of zero, to A~+u,f. Since the latter is a 
continuous function of u into C(~) it follows from an elementary theorem 
on uniform convergence of derivatives that T~+u, f is actually differentiable 
as a function of u into C(9) for small u, and that its derivative is A~+~f. 
Thus (4.15) holds for all f in C l and (4.12) follows from (4.14). I 

I .emma 6. Let ( >~ denote expectation with respect to the unique 
Gibbs state corresponding to the potential cp in | If f is in C 1 then (f>~0 is 
a continuously differentiable function of r in | in the sense that 

O,p<f)r -- d( f )~+~l  du[,=o 

exists for each ~p in | and + in ~,  and, for fixed qJ, is a continuous function 
of rp. Moreover, 

ID,~<f),vl <[1 - a(cp)]-2tlqJll~lf[~ (4.16) 

The derivative is given by the convergent series 

D~(f)~ = ~ ((D~Tr)Trk-xf),v (4.17) 
k = l  

Proof. Choose a point ~ in ~. For r in | and any function g in C(9) 
we have 

(g)~  = lim (T~g)(g) (4.18) 
n--) oo 

This is essentially Dobrushin's basic result. (See, e.g., Corollary 3.3 of Ref. 
6 for a proof.) 

Let us remark that as a function of r T~g is continuous from | into 
C(~) if g is in C(fl), and is continuous from | into C 1 if g is in C 1. Both of 
these assertions can be proved by observing first that they are true if g is a 
continuous cylinder function, since in this case T~g = "r~'r~...'rTg for 
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some p, so that Lemma 3 may be applied p times. Second, if g is an 
arbitrary function in C 1 and gn are continuous cylinder functions with 
Ig, - g ] l  ~ 0 ,  then ]T,~g,, - T~gh < a(q~) lg , -g l l  < [g,,-g[l for all q0 in 
| Hence Trg,, converges uniformly on | to T,g, showing that q9 ~ T~g is 
continuous from | to C 1. A similar argument shows q~ ~ T~g is continuous 
from ff to C(f~) when g is in C(~) since T~ is a contraction inC(f~) norm 
for all r 

Now let f be in C 1. Informally, we have by the chain rule 
n 

" - T~ T~T~ •)(g) (4.19) d[(T~+u~)'f](s)/du[u=0 = E ( ~-k , k- 
k = l  

where T~g = dT~+ u~g/du at u = 0. This step is easily justified in view of 
Lemma 5 and the preceding remark since 

T n _ (~0+~r f ( r~0) ' f=  ~ (T~+~r T~)(T~)k-l f  
k = l  

so that the difference quotient converges uniformly on ~2 as u--~ 0. One 
must use here the contractivity of (T~+~,) ~-k in C(f~) and its strong 
continuity in u as well as a standard double approximation argument. 

Using (4.18) we have 

lim ( T n - k T ' r k - l f ) ( ~ ) = (  ' k-1 r; r;  'f)~. 
n - - )  ~ \ cp ~p - cp 

Moreover, 

T; T~T; 7)(g)[ < [T~T; 'fl~ 

[ 1 - ] - I l l , f i l l  711 

<[1 - ~ ( q 0 ) ] - l ~ ( ~ ) k - l b p l l l l f [  1 (4.20) 

Therefore, since a(r 1, the limit of the right side of (4.19) exists and 
converges for each q0 in | to 

T~T~ ~f>~ (4.21) 
k = l  

Since ~he kth term is majorized by [1 - a(q0)]-la(r the sum of 
the series is no more than [1 - a(q0)]-zl[~l[l[fll. 

This would establish (4.16) and (4.17) if we knew that the series 
actually represents the derivative on | To this end it suffices to show that 
the right side of (4.19) converges to (4.21) pointwise and boundedly on each 
open set A~ = {~ : a(q0) < x < 1}, and that the sum (4.21) is continuous on 
| For then the dominated convergence theorem yields for ~ in | and 
small v, (f>~o + v~ - ( f>r  = lim(T~+ ~f)(g) - l im(TJ)(g) = limf~[d(T~+ u#f) 
(g)/du]du = f~F(cp + uq~)du, where F(qo) denotes the sum (4.21). The fun- 
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damental theorem of calculus can then be applied. But the boundedness of 
the convergence on A~ follows from the inequalities (4.20), and these same 
estimates show that (4.21) will be continuous on each set A~, and hence on 
| if each term (Ts T~-lf)~ is a continuous function on A~. But the map 
~0 ~ T~-~r is continuous on | to C 1 as remarked early in the proof of this 
lemma. Moreover the map cO ~ Ts is continuous from A~ to C(~) for g in 
C '  by Lemma 5 and ITs162 -< (1 - ~)-~ll~ll~lgl, for all q~ in A~. It follows 
that the map r ---) 7-~ T~- ~f is continuous on A~ to C(12). Thus the lemma 
will be concluded once it is shown that for fixed g in C(~2) the map 
~0 --) ( g)r is continuous on each A~. But the proof of Corollary 3.3 of Ref. 6 
shows that for fixed g in C 1 (T~g)(g) converges uniformly to (g )~  on Am. 
So (g)~  is continuous in (p for g in C 1. But since C l is dense in C(12) and 
the linear functionals ( �9 )~ are uniformly bounded on C(~2) the continuity 
r --) ( g)~ for g in C(f~) follows. This concludes the proof of the lemma. [] 

Proof of Theorem. A potential r in the Dobrushin uniqueness 
region | has a unique Gibbs state by the Dobrushin uniqueness theorem. 
Since every equilibrium state is also a Gibbs state (cf. Ref. 14, Theorem 4.2, 
or Ref. 10, Theorem III, 2.1), rp has a unique equilibrium state. That is to 
say, the pressure, as a convex function on •, has a unique tangent 
functional. This implies that the pressure P has a derivative, ~P(~ + mp)/ 
0u[,=0, as noted in Ref. 11, p. 96 (or see Ref. 12, Theorem 44A, p. 113). 
Moreover the derivative is given by (cf. Ref. 10, Section II.1) 

D,P(~p) -- ~P(~p + u~)/~lul,= o = (f~)~0 (4.22) 

where 

f+(s) = -  ~, Ihl-lq~(stA) (4.23) 
A ~ O  

Nowf~ is in C 1 when + is in P ,  and in fact even when II~lla < ~ .  For 
if s and t are configurations which differ only at a po in t j  in Z " ,  then 

lYe(s) - f~ ( t ) [  = I ~ IAl- l[~(s[  A) - ~(t  IA)]I 
A ~ 0  

= I ~, I a l - ' [ ~ ( s l A ) -  @(tlA)]l 
A D (0 , j )  

<2 ~. IAi-lsuplg,(ulh)l 
A ~ {0,j} u ~ 

Hence 

~ ( f + ) < 2 2  ~ IAl-lsuplq~(u[A)t 
j E Z  'n j A ::3 (0 , j}  u E a  

= 2 2 sup I , (u  IA)I 
A ~ O u E f ~  

= 211~111 
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Thus 

But by Lemma 6 (~>~ 
twice differentiable and 

[f~h < 21l@llm (4.24) 

is a differentiable function of q0. Thus P is 

P~' (~1, %) - 0u0v ].=v=0 

= D~2(fr ~ 

By Lemma 6 the right side is continuous in cp for fixed ~1 and ~2, and 
moreover 

]U(~bl,~2)[ <[1 - a(q0)]-zll~b2l[l[f~,ll 

< 2[1 - a(~)]-211%11,11,,11, 

which is a slightly stronger inequality than (2.7) because I[~111 ~< I1~11. 

Ftomark .  The equation (3.6) can now be easily interpreted. By Eqs. 
(4.17) and (4.22) we have 

oo 

P/ ' (~ , , 'P)  = E (Ts (4.25) 
k ~ l  

where f~, is given by Eq. (4.23) and T~ is D,pT~, as defined in (4.11) and 
discussed in Lemma 5. But since T~ takes constant functions to constant 
functions we may regard T~ as an operator on the Banach space of C 1 
functions modulo constant functions. On this space we have 1[ T~H < a(r 
< 1 for ~ in | Hence 1 - T~ has an inverse on this quotient space and 
(1- T ~ ) - ' - - ~ = , T ~ - ' .  Now Ts annihilates constants because T~I is 
independent of ~. Thus Ts may be regarded as a map from the quotient 
space to functions. Lemma 5 shows that this map is continuous from C ~ 
norm to C(~). Thus Ts - T~) -1 is a continuous and well-defined map 
from C1/constants into C(~). It may be applied to a function f in C 1 by 
first projecting f into the quotient space. With this interpretation of (1 - 
T~)-' the right side of (4.25) may be written ( T ~ ( 1 -  T~)-~r This 
makes clear the meaning of Eq. (3.6). 
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